LECTURE 10

RELATED PROBLEMS

Q1

17. Compounds 'A' and 'B' react according to the following chemical equation.

$$A(g) + 2B(g) \longrightarrow 2C(g)$$

Concentration of either 'A' or 'B' were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.

Experiment	Initial concentration of [A]/mol L ⁻¹	Initial concentration of [B]/mol L ⁻¹	Initial rate of formation of [C]/mol L ⁻¹ s ⁻¹
1.	0.30	0.30	0.10
2.	0.30	0.60	0.40
3.	0.60	0.30	0.20

- (i) Rate = $k [A]^2 [B]$
- (ii) Rate = k [A] [B]²
- (iii) Rate = k [A] [B]
- (iv) Rate = $k [A]^2 [B]^0$

Ans. (ii)

Explanation: Rate of experiment = $k[A]^x[B]^y = k[0.30]^x[0.30]^y$

Rate of experiment = $k[0.30]^x[0.60]^y$

Dividing experiment (1) by (2)

$$k[0.30]^x[0.30]^y = 0.10$$

$$k[0.30]^x[0.60]^y = \frac{0.40}{0.40}$$

$$[1/2]$$
 y = $\frac{1}{4}$ or y = 2

Similarly, on dividing rate of experiment (1) by (3)

$$\frac{k[0.30]^x[0.30]^y}{0.30} = \frac{0.10}{0.10}$$

$$\frac{1}{k[0.60]^x[0.30]^y} = \frac{1}{0.20}$$

$$[1/2]x = 1/2 \text{ or } x = 1$$